香港中文大學
The Chinese University of Hong Kong

CSCI2510 Computer Organization Lecture 02：Number and Character Representation

Ming－Chang YANG

Recall: How to talk to the computer?

High-level
Language

Outline

- Number Representation
- Number Systems
- Integers
- Unsigned Integer
- Signed Integer
- Arithmetic Operations
- Floating-Point Numbers
- Unsigned Binary Fraction
- Floating-Point Number Representation
- Arithmetic Operations
- Character Representation
- ASCII

Number Systems

- Common number systems:
- The radix or base of the number system denotes the number of digits used in the system.

Binary (base 2)
Octal (base 8)
Decimal (base 10)
Hexadecimal (base 16)

01
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\begin{array}{lllllllll}0 & 1 & 2 & 4 & 6 & 7 & 9\end{array}$
0123456789 A B C D E F

- The most natural way in a computer system is by binary numbers $(0,1)$.
- $(0,1)$ can be represented as (off, on) electrical signals.

Outline

- Number Representation
- Number Systems
- Integers
- Unsigned Integer
- Signed Integer
- Arithmetic Operations
- Floating-Point Numbers
- Unsigned Binary Fraction
- Floating-Point Number Representation
- Arithmetic Operations

Character Representation

- ASCII

Count to 100 in Decimal!

1234567891011121314151617 181920212223242526272829 303132333435363738394041

The Count to 100 by ones Sone

666768697071727374757677
787980818283848586878889
90919293949596979899100

$$
100=1 \times 10^{2}+0 \times 10^{1}+0 \times 10^{0}
$$

"Unsigned" Integer Representation

- Consider an n-bit (or n-digit) vector

$$
B=\left(b_{n-1} \ldots b_{1} b_{0}\right)_{2}
$$

Denoting the base as a subscript
where $b_{i}=0$ or 1 (binary number) for $0 \leq i \leq n-1$

- Most Significant Bit (MSB): b_{n-1} (i.e., the leftmost bit)
- Least Significant Bit (LSB): b_{0} (i.e., the rightmost bit)
- This vector can represent the decimal value for an unsigned integer $V(B)$ in the range 0 to $2^{n}-1$, where $\mathrm{V}(B)=b_{n-1} \times 2^{n-1}+\cdots+b_{1} \times 2^{1}+b_{0} \times 2^{0}$
- For example, if $B=(1001)_{2}$, where $n=4$

$$
V(B)=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(9)_{10}
$$

Conversion of Number Systems

(Decimal $)_{10}$	(Binary $)_{2}$	(Octal) 8	(Hexadecimal $)_{16}$
$(00)_{10}$	$(0000)_{2}$	$(00)_{8}$	$(0)_{16}$
$(01)_{10}$	$(0001)_{2}$	$(01)_{8}$	(1) 16
$(02)_{10}$	$(0010)_{2}$	(02) ${ }_{8}$	(2) 16
$(03)_{10}$	$(0011)_{2}$	$(03)_{8}$	(3) 16
$(04)_{10}$	$(0100)_{2}$	$(04)_{8}$	(4) 16
$(05)_{10}$	$(0101)_{2}$	$(05)_{8}$	(5) 16
$(06)_{10}$	$(0110)_{2}$	$(06)_{8}$	(6) 16
$(07)_{10}$	$(0111)_{2}$	$(07)_{8}$	(7) 16
$(08)_{10}$	$(1000)_{2}$	$(10)_{8}$	(8) 16
$(09)_{10}$	$(1001)_{2}$	$(11)_{8}$	(9) 16
$(10)_{10}$	$(1010)_{2}$	(12) 8	(A) 16
$(11)_{10}$	$(1011)_{2}$	(13) ${ }_{8}$	(B) 16
$(12)_{10}$	$(1100)_{2}$	(14) 8	(C) 16
$(13)_{10}$	$(1101)_{2}$	$(15)_{8}$	(D) 16
$(14)_{10}$	$(1110)_{2}$	$(16)_{8}$	(E) 16
$(15)_{10}$	$(1111)_{2}$	$(17)_{8}$	(F) ${ }_{16}$

Class Exercise 2.1

Name:

- Represent (255) ${ }_{10}$ in binary, octal, and hexadecimal:

Binary (base 2)
Octal (base 8)
Decimal (base 10) Hexadecimal (base 16) 0123456789 A B C D E F

"Signed" Integer Representation (1/3)

- To represent both positive and negative numbers, we need different systems to representing signed integer.
- In written decimal system, a signed integer is usually represented by a "+" or "-" sign and followed by the magnitude.
- E.g. - 73, $-215,+349$
- In binary system, we have three common systems:
(1) Sign-and-magnitude
(2) 1's-complement
(3) 2's-complement

＂Signed＂Integer Representation（2／3）

－The leftmost bit（MSB）decides the sign（0：＂＋＂，1：＂－＂）．
－Positive values are identical in all the three systems：
－Rule：Treating the rest bits as an unsigned integer
$>$ E．g．，+3 is represented by 0011.
－Negative values have different representations：
（1）Sign－and－magnitude（MSB：sign，other bits：magnitude）
－Rule：Changing the MSB from 0 to 1 ex：${ }_{\downarrow}^{0011}$
$>$ E．g．-3 is represented by 1011.
1011
（2）1＇s－complement
－Rule：Inverting each bit of the positive number
＞E．g．-3 is obtained by flipping each bit in 0011 to yield 1100.

10000
－） 0011

1101 ex：

1100
＋） 0001

"Signed" Integer Representation (3/3)

Values Represented in Decimal

$b_{3} b_{2} b_{1} b_{0}$	Sign-and-magnitude	1's-complement	2's-complement
0111	+ 7	$+7$	$+7$
0110	$+6$	$+6$	$+6$
0101	+ 5	+ 5	+ 5
0100	+ 4	+ 4	+ 4
0011	$+3$	$+3$	$+3$
0010	$+2$	$+2$	$+2$
0001	$+1$	+1	+1
0000	+ 0	$+0$	$+0$
1000	-0	-7	-8
1001	-1	-6	- 7
1010	- 2	- 5	- 6
1011	- 3	-4	- 5
1100	-4	- 3	-4
1101	- 5	-2	- 3
1110	-6	- 1	-2
1111	- 7	-0	- 1

Class Exercise 2.2

- Question: Which representation system(s) uses distinct representations for +0 and -0 ?
- Answer:
- Question: Which representation system(s) has only one representation for 0 ?
- Answer:
- Question: Which representation system(s) is able to represent - 8 for 4-bit numbers?
- Answer:

Class Exercise 2.3

- Question: Consider the decimal number -56. Please use 8 bits to represent it in:
- Sign-and-magnitude: \qquad
- 1's-complement:
- 2's-complement:
- Question: Consider the 8-bit string 10110101, what is its decimal value when interpreted as:
- Sign-and-magnitude: \qquad
- 1's-complement:
- 2's-complement:
- Question: Given n bits, what is the range of integers can be represented by the three representations?
- Answer: \qquad

Addition of "Unsigned" Integers

- Addition of 1 -bit unsigned numbers:

- To add multiple-bit numbers:
- We add bit pairs starting from the low-order (right) end, propagating carries toward the high-order (left) end.
- The carry-out from a bit pair becomes the carry-in to the next bit pair.
- The carry-in must be added to a bit pair in generating the sum and carry-out at that position.
carry-out sum
- For example,

	- ${ }^{2} 111111$
+	00000001
	10000000

Arithmetic of "Signed" Integers

- The three signed integer representation systems differ only in the way of representing negative values.
- Their relative merits on performing arithmetic operations can be summarized as follows:
- Sign-and-magnitude: the simplest representation, but it is also the most awkward for addition/subtraction operations.
- 1's-complement: somewhat better than the sign-andmagnitude system.
- 2's-complement: the most efficient method for performing addition and subtraction operations.
- This is also why the 2's-complement system is the one most often used in modern computers.

Why 2's-complement Arithmetic?

- First consider adding + 7 to -3 :
- What if we perform this addition by adding bit pairs from right to left (as what we did for n-bit unsigned numbers)?

		0				
leftmost	$+$	1	1			
carry-out bit		0	1			

- If the leftmost carry-out bit is ignored, we get $(+4)_{10}$.
- Rules for n-bit signed number addition/subtraction:
- $\boldsymbol{X}+\boldsymbol{Y}$
- Add their n-bit 2's-complement representations from right to left
- Ignore the carry-out bit at the MSB position
- $\boldsymbol{X}-\boldsymbol{Y}$
- Interpret as, and perform $X+(-Y)$
- Note: The sum should be in the range of $-2^{n-1} \sim\left(2^{n-1}-1\right)$

Class Exercise 2.4

- Using 4-bit 2's-complement number to calculate:
- $2+3$
- 4+(-6)
- (-5) $+(-2)$
- 2-4
- (-7)-1
- (-7)-(-5)

2's-Complement Number Wheel

Overflow in Integer Arithmetic

- Overflow: The result of an arithmetic operation does not fall within the representable range.
- In Unsigned Number Arithmetic:
- Rule: A carry-out of 1 from the MSB-bit always indicates an overflow.
- E.g. $(1111)_{2}+(0001)_{2}=(\underline{1} 0000)_{2} \leftarrow$ overflowed
- E.g. $(0111)_{2}+(0001)_{2}=(01000)_{2} \leftarrow$ no overflow
- In 2's-complement Signed Number Arithmetic:
- The carry-out bit from the sign-bit is not an indicator of overflow.

$$
\begin{aligned}
& - \text { E.g. }(+7)_{10}+(+4)_{10}=(0111)_{2}+(0100)_{2}=\left(\begin{array}{ll}
0 & 1011)_{2}=(-5)_{10} \\
- \text { E.g. }(-4)_{10}+(-6)_{10}=(1100)_{2}+(1010)_{2}=(\underline{1} & 0110)_{2}=(+6)_{10}
\end{array}\right.
\end{aligned}
$$

- Observation: Addition of opposite sign numbers never causes overflow.
- E.g. $(+7)_{10}+(-6)_{10}=(0111)_{2}+(1010)_{2}=(0001)_{2}=(+1)_{10} \leftarrow$ no overflow
- Rule: If the two numbers are the same sign and the result is the opposite sign, we say that an overflow has occurred.
- E.g. $(+7)_{10}+(+4)_{10}=(0111)_{2}+(0100)_{2}=(1011)_{2}=(-5)_{10} \leftarrow$ overflowed
- E.g. $(-4)_{10}+(-6)_{10}=(1100)_{2}+(1010)_{2}=(0110)_{2}=(+6)_{10} \leftarrow$ overflowed

Sign Extension

- We often need to represent a value given in a certain number of bits by using a larger number of bits.
- That is, how to represent a signed integer by using a larger number of bits?
- Sign Extension: Simply repeat the "sign bit" as many times as needed to the left. (Note: It can be applied to both 1's and 2's-complement, but not sign-and-magnitude)
- Positive Number: Add 0's to the left-hand-side
- E.g. $0111 \rightarrow \underline{0000} 0111$
- Negative Number: Add 1's to the left-hand-side
- E.g. $1010 \rightarrow 11111010$

Example: Representing -2~+1 with 8 bits by 2 's-complement

$\mathbf{B}=b_{7} b_{6} \ldots$	b_{0}	complement
000000	01	+1
000000	00	+0
111111	10	-2
111111	11	-1

- Number Representation
- Number Systems
- Integers
- Unsianed Integer
- Signed Integer
- Arithmetic Operations
- Floating-Point Numbers
- Unsigned Binary Fraction
- Floating-Point Number Representation
- Arithmetic Operations

Character Representation

- ASCII

Unsigned Binary Fraction

- Consider a n-bit unsigned binary fraction:

$$
B=\left(0 . b_{-1} b_{-2} \ldots b_{-n}\right)_{2}
$$

where $b_{-i}=0$ or 1 (binary number) for $1 \leq i \leq n$

- This vector can represent the value for an unsigned binary fraction $\mathrm{F}(B)$, where

$$
\mathrm{F}(B)=b_{-1} \times 2^{-1}+b_{-2} \times 2^{-2}+\cdots+b_{-n} \times 2^{-n}
$$

- The range of $\mathrm{F}(B)$ is

$$
\begin{aligned}
& \text { B) IS } \\
& 0 \leq \mathrm{F}(B) \leq 1-2^{-n} \quad s_{n}=\sum_{i=1}^{n} a_{i} i^{i-1}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
\end{aligned}
$$

$$
0 \leq \mathrm{F}(B) \approx+1.0, \text { for a large } n
$$

Binary Fraction to Decimal Fraction

-What is the binary fraction $(0.011010)_{2}$ in decimal ?

Decimal Fraction to Binary Fraction

-What is the decimal fraction $(0.6875)_{10}$ in binary?

$$
\begin{aligned}
& 0.6875 * 2=1.3750 \rightarrow 0.1 ? ?_{2} \\
& 0.3750 * 2=0 . \underline{7500} \rightarrow 0.10 ?_{2} \\
& 0 . \underline{7500} * 2=1.5000 \rightarrow 0.101 ?_{2} \\
& 0 . \overline{5000} * 2=1 . \underline{0000} \rightarrow 0.1011_{2} \\
& 0 . \underline{0000} * 2=0 \quad \rightarrow \text { End }
\end{aligned}
$$

- Answer: (0.1011) 2

Why? Let's have an analogy in decimal:

$$
\begin{aligned}
& 0.6875 * 10=6.875 \rightarrow(0.6 ? ? ?)_{10} \\
& 0.8750 * 10=8.7500 \rightarrow(0.68 ? ?)_{10}
\end{aligned}
$$

Class Exercise 2.5

-What is the decimal fraction $(0.1)_{10}$ in binary?

- Answer:

What did we learn so far?

- On one hand:
- Some decimal fractions (e.g. (0.1) ${ }_{10}$) will produce infinite binary fraction expansions.
- A n-bit unsigned fraction can only represent values in the range of $0 \sim 1-2^{-n}$ and cannot represent negative values.
- The position of the binary point in a floating-point number varies (that's way called floating point!).

$$
0.232 * 10^{4}=2.320000 * 10^{3}=23.20000 * 10^{2}=\ldots
$$

- On the other hand:
- A n-bit signed integer in 2's-complement form can only represent values in the range of $-2^{n} \sim 2^{n}-1$.
- We need a unique representation (form) that can
(1) Represent the sign, and the position of the floating point.
(2) Represent both very large integers \& very small fractions.

Floating Point Number Representation

- In decimal scientific notation, numbers are written as: $+6.0247 \times 10^{23},+3.7291 \times 10^{-27},-7.3000 \times 10^{-14}, \ldots$
- The same approach can be used to represent binary floating-point numbers (using 2 as the base) by:
- Sign: A sign for the number
- Mantissa: Some significant bits
- Exponent: A signed scale factor (implied base of 2)
- To have a normalized representation for floating-point numbers, we should normalize Mantissa in the range [$1 \ldots B$), where B is the base.
- Binary System: [1 ... 2)
- (1. $\left.\mathbf{b}_{-1} \mathbf{b}_{-2} \ldots \mathbf{b}_{-n}\right)_{2}$ must in the range of $[1 \ldots 2$).

IEEE Standard 754 Single Precision

- The single precision format is a 32-bit representation.
- The leftmost bit represents the sign, S, for the number.
- The next 8 bits, E^{\prime}, represent the unsigned integer for the excess - 127 exponent (with base of 2).
- Note: The actual signed exponent E is E'-127
- The remaining 23 bits, M, are the significant bits.

Example:

$$
(00101000)_{2} \rightarrow(40)_{10} \quad \text { Value represented }=+1.01101 \ldots 0 \times 2^{-87}
$$

$$
40-127=-87
$$

$$
(0.01101 \ldots 0)_{2} \rightarrow(0.40625)_{10}
$$

Class Exercise 2.6

- What is the IEEE single precision number (40C0 0000) ${ }_{16}$ in decimal?

- Answer:

Class Exercise 2.7

- What is $(-0.5)_{10}$ in the IEEE single precision binary floating point format?
- Answer:

Useful Tool

- IEEE-754 Floating Point Converter

- https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754 Converter (JavaScript), V0. 22

IEEE 754 Converter (JavaScript), V0. 22

Special Values

32 bits

1 signifies - range of $E^{\prime}: 0 \sim 255$
Value represented $= \pm 1 . M \times 2^{E^{\prime}-127}$

- When exponent $E^{\prime}=0$ (all 0 's) and mantissa $M=0$:
- The value 0 is represented.
- When exponent $E^{\prime}=0$ (all 0 's) and mantissa $M \neq 0$:
- Denormal values (i.e. very small values) are represented.
- When exponent $E^{\prime}=255$ (all 1's) and mantissa $M=0$:
- The value ∞ is presented.
- When exponent $E^{\prime}=255$ (all 1's) and mantissa $M \neq 0$:
- Not a Number (NaN) (e.g. 0/0 or $\sqrt{-1}$) is presented.

IEEE Standard 754 Double Precision

- The double precision format is a 64-bit representation.
- The leftmost bit represents the sign, S, for the number.
- The next 11 bits, E^{\prime}, represent the unsigned integer for the excess-1023 exponent (with base of 2).
- Note: The actual signed exponent E is E'-1023.
- The remaining 52 bits, M , are the significant bits.

Value represented $= \pm 1 . M \times 2^{E^{\prime}-1023}$

Note: No need to represent the leading 1 in M.

Arithmetic on Floating-Point Number (1/2)

- When adding/subtracting floating-point numbers, their mantissas must be shifted with respect to each other.
- E.g. adding $(2.9400)_{10} \times 10^{2}$ to $(4.3100)_{10} \times 10^{4}$
- We rewrite $(2.9400)_{10} \times 10^{2}$ as $(0.0294)_{10} \times 10^{4}$
- Then perform addition of the mantissas to get 4.3394×10^{4}.
- Add/Subtract Rule

1) Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents.
2) Set the exponent of the result equal to the larger exponent.
3) Perform addition/subtraction on the mantissas and determine the sign of the result.
4) Normalize the resulting value, if necessary.

Arithmetic on Floating-Point Number (2/2)

- Multiplication and division are somewhat easier than addition and subtraction.
- No alignment of mantissas is needed.
- Multiply Rule

1) Add the exponents and subtract 127 to maintain the excess-127 representation.
2) Multiply the mantissas and determine the sign of the result.
3) Normalize the resulting value, if necessary.

- Divide Rule

1) Subtract the exponents and add 127 to maintain the excess-127 representation.
2) Divide the mantissas and determine the sign of the result.
3) Normalize the resulting value, if necessary.

Outline

- Number Representation
- Number Systems
- Integers
- Unsigned Integer
- Signed Integer
- Arithmetic Operations
- Floating-Point Numbers
- Unsigned Binary Fraction
- Floating-Point Number Representation
- Arithmetic Operations
- Character Representation
- ASCII

Character Representation

- The most common encoding scheme for characters is ASCII (American Standard Code for Information Interchange).
- In ASCII encoding scheme, alphanumeric characters, operators, punctuation symbols, and control characters can be represented by 7-bit codes.
- It is convenient to use an 8-bit byte to represent a character.
- The code occupies the low-order 7 bits with the high-order bit as 0 .
- Extended ASCII encoding scheme uses 8-bit (or even more) to represent the standard 7-bit ASCII characters, plus additional characters.

ASCII Table

Dec	Bin	Hex	Char												
0	00000000	00	[NUL]	32	00100000	20	space	64	01000000	40	@	96	01100000	60	
1	00000001	01	[SOH]	33	00100001	21	$!$	65	01000001	41	A	97	01100001	61	a
2	00000010	02	[STX]	34	00100010	22	"	66	01000010	42	B	98	01100010	62	b
3	00000011	03	[ETX]	35	00100011	23	\#	67	01000011	43	C	99	01100011	63	c
4	00000100	04	[EOT]	36	00100100	24	\$	68	01000100	44	D	100	01100100	64	d
5	00000101	05	[ENQ]	37	00100101	25	\%	69	01000101	45	E	101	01100101	65	e
6	00000110	06	[ACK]	38	00100110	26	\&	70	01000110	46	F	102	01100110	66	f
7	00000111	07	[BEL]	39	00100111	27		71	01000111	47	G	103	01100111	67	g
8	00001000	08	[BS]	40	00101000	28	(72	01001000	48	H	104	01101000	68	h
9	00001001	09	[TAB]	41	00101001	29)	73	01001001	49	I	105	01101001	69	i
10	00001010	OA	[LF]	42	00101010	2A	*	74	01001010	4A	J	106	01101010	6A	j
11	00001011	OB	[VT]	43	00101011	2B	+	75	01001011	4B	K	107	01101011	6B	k
12	00001100	OC	[FF]	44	00101100	2C	,	76	01001100	4C	L	108	01101100	6C	1
13	00001101	OD	[CR]	45	00101101	2D	-	77	01001101	4D	M	109	01101101	6D	m
14	00001110	OE	[SO]	46	00101110	2E		78	01001110	4E	N	110	01101110	6E	n
15	00001111	OF	[SI]	47	00101111	2F	/	79	01001111	4 F	\bigcirc	111	01101111	6 F	\bigcirc
16	00010000	10	[DLE]	48	00110000	30	0	80	01010000	50	P	112	01110000	70	p
17	00010001	11	[DC1]	49	00110001	31	1	81	01010001	51	Q	113	01110001	71	q
18	00010010	12	[DC2]	50	00110010	32	2	82	01010010	52	R	114	01110010	72	r
19	00010011	13	[DC3]	51	00110011	33	3	83	01010011	53	S	115	01110011	73	s
20	00010100	14	[DC4]	52	00110100	34	4	84	01010100	54	T	116	01110100	74	t
21	00010101	15	[NAK]	53	00110101	35	5	85	01010101	55	U	117	01110101	75	u
22	00010110	16	[SYN]	54	00110110	36	6	86	01010110	56	v	118	01110110	76	v
23	00010111	17	[ETB]	55	00110111	37	7	87	01010111	57	W	119	01110111	77	w
24	00011000	18	[CAN]	56	00111000	38	8	88	01011000	58	x	120	01111000	78	x
25	00011001	19	[EM]	57	00111001	39	9	89	01011001	59	Y	121	01111001	79	Y
26	00011010	1A	[SUB]	58	00111010	3A	:	90	01011010	5A	Z	122	01111010	7A	z
27	00011011	1B	[ESC]	59	00111011	3B	;	91	01011011	5B	[123	01111011	7B	\{
28	00011100	1C	[FS]	60	00111100	3c	$<$	92	01011100	5C	1	124	01111100	7C	1
29	00011101	1D	[GS]	61	00111101	3D	$=$	93	01011101	5D]	125	01111101	7D	\}
30	00011110	1E	[RS]	62	00111110	3E	$>$	94	01011110	5E	\wedge	126	01111110	7E	\sim
31	00011111	1 F	[US]	63	00111111	3F	?	95	01011111	5F		127	01111111	7F	[DEL]

Extended ASCII Table

ASCII control characters			ASCII printable characters					
00	NULL	（Null character）	32	space	64	＠	96	
01	SOH	（Start of Header）	33	！	65	A	97	a
02	STX	（Start of Text）	34	＂	66	B	98	b
03	ETX	（End of Text）	35	\＃	67	C	99	c
04	EOT	（End of Trans．）	36	\＄	68	D	100	d
05	ENQ	（Enquiry）	37	\％	69	E	101	e
06	ACK	（Acknowledgement）	38	\＆	70	F	102	f
07	BEL	（Bell）	39	＇	71	G	103	g
08	BS	（Backspace）	40	（	72	H	104	h
09	HT	（Horizontal Tab）	41	）	73	I	105	i
10	LF	（Line feed）	42	＊	74	J	106	j
11	VT	（Vertical Tab）	43	＋	75	K	107	k
12	FF	（Form feed）	44	，	76	L	108	I
13	CR	（Carriage return）	45	－	77	M	109	m
14	SO	（Shift Out）	46	－	78	N	110	n
15	SI	（Shift In）	47	1	79	0	111	0
16	DLE	（Data link escape）	48	0	80	P	112	p
17	DC1	（Device control 1）	49	1	81	Q	113	q
18	DC2	（Device control 2）	50	2	82	R	114	r
19	DC3	（Device control 3）	51	3	83	S	115	s
20	DC4	（Device control 4）	52	4	84	T	116	t
21	NAK	（Negative	53	5	85	U	117	u
22	SYN	（Synabkmovis）idle）	54	6	86	V	118	v
23	ETB	（End of trans．	55	7	87	W	119	w
24	CAN	（Daprekd）	56	8	88	X	120	x
25	EM	（End of medium）	57	9	89	Y	121	y
26	SUB	（Substitute）	58	：	90	Z	122	z
27	ESC	（Escape）	59	，	91	［	123	\｛
28	FS	（File separator）	60	$<$	92	1	124	I
29	GS	（Group separator）	61	＝	93	］	125	\}
30	RS	（Record separator）	62	＞	94	\wedge	126	\sim
31	US	（Unit separator）	63	？	95	－		
127	DEL	（Delete）						

Extended ASCII characters							
128	Ç	160	á	192	L	224	O
129	ü	161	i	193	\perp	225	B
130	é	162	ó	194	T	226	Ô
131	â	163	ú	195	－	227	Ò
132	ä	164	ñ	196	－	228	õ
133	à	165	N	197	＋	229	O
134	å	166	a	198	ã	230	μ
135	ç	167	0	199	Ã	231	p
136	ê	168	¿	200	L	232	p
137	ë	169	（8）	201	［	233	Ú
138	è	170	7	202	$\underline{\square}$	234	U
139	Ï	171	1／2	203	\bar{T}	235	Ù
140	ì	172	1／4	204	15	236	ý
141	i	173	1	205	＝	237	\dot{Y}
142	Ä	174	＂	206	π	238	
143	A	175	＂	207	$\mathfrak{\square}$	239	
144	É	176		208	¢	240	三
145	æ	177		209	Đ	241	\pm
146	\boldsymbol{F}	178	䔨	210	E	242	
147	ô	179		211	E	243	$\overline{3 / 4}$
148	ö	180	－	212	E	244	ๆ
149	ò	181	A	213	1	245	§
150	û	182	A	214	İ	246	\div
151	ù	183	À	215	İ	247	
152	$\ddot{\text { y }}$	184	©	216	Ï	248	－
153	0		4	217	」	249	
154	Ü	186	\｜	218	Γ	250	－
155	\varnothing	187	7	219	\square	251	1
156	£	188	］	220	\square	252	3
157	\varnothing	189	¢	221	！	253	2
158	\times	190	$¥$	222	I	254	－
159	f	191	7	223	\square	255	nbsp

Class Exercise 2.7

- Represent "Hello, CSCI2510" using ASCII code:

	Decima	
H		
e		
1		
l		
0		
,		
C		
S		
C		
I		
2		
5		
1		
0		

Summary

- Number Representation
- Number Systems
- Integers
- Unsigned Integer
- Signed Integer
- Arithmetic Operations
- Floating-Point Numbers
- Unsigned Binary Fraction
- Floating-Point Number Representation
- Arithmetic Operations
- Character Representation
- ASCII

